2009년 5월 30일 토요일

다양한 패러독스들

과녁을 향해 쏘아진 화살을 상상해보자. 화살은 과녁까지의 거리의 반을 지나고, 남은 거리의 반을 지나고, 또 남은 거리의 반을 지나고... 과녁을 향해 날아간다. 어떤 순간에도 화살과 과녁의 거리가 존재하기 때문에 화살은 결코 과녁에 도달할 수 없지 않을까? 선분을 긋는데 처음에는 10cm를, 연이어 5cm의 선분을, 다음에는 2.5cm를… 이어나가면 이 선분의 길이는 과연 얼마가 되며 그 끝을 알 수 있을까. 이 물음들은 ‘발이 빠른 아킬레스는 결코 거북을 따라잡을 수 없다’는 우리에게 너무나 친숙한 패러독스와 일맥상통한다. 그리스의 유명한 철학자 제논은 공간과 시간에 대한 통념과 관련해 다음의 네가지 패러독스 시리즈를 제기했다.
◆ 반분의 패러독스

움직임이란 존재할 수 없다. 왜냐하면 도착점에 도달하려면 중간지점을 통과 해야 되고 중간지점에 도달하기 전에 4분의 1지점을 반드시 통과해야 하고 그 4분의 1지점을 통과하기 전에는 8분의 1지점을 통과해야하는데 그렇다면 결코 출발할 수가 없다.

◆ 아킬레스의 패러독스

가장 발이 빠르다고 알려진 아킬레스도 그보다 먼저 출발한 거북이는 결코 따라잡을 수 없다. 아킬레스가 거북이의 출발점에 도착했을 때는 이미 거북이는 앞으로 나아갔고 아킬레스가 다시 따라잡을 경우에도 거북이는 이미 그 지점을 지나쳐버리기 때문.

◆ 화살의 패러독스

시간은 최소의 단위인 ‘순간’으로 구성돼 있다. 쏘아진 화살은 움직이든가, 아 니면 멈춰있든가 둘 중의 하나다. 만일 화살이 움직인다면 화살은 어느 순간의 시작점인 동시에 어느 순간의 끝점의 위치에 놓여져야 한다. 이것은 ‘순간’을 분할할 수 있다는 얘기가 돼 모순이 되므로 화살은 정지해 있어야만 된다.

◆ 경기장의 패러독스

그림과 같이 경기장에 세 열이 있다. A열은 멈춰있고 B와 C열은 같은 속도로 반대방향으로 움직여서 A, B, C 세열이 정렬됐다. 이때 B열의 구성원들은, A열의 성원은 한명씩 C열의 성원은 두명씩 통과하게 된다. B와 C열이 A위치에 도달하는데는 같은 시간이 걸리므로 시간의 반은 시간의 두배와 같다.

◆ 궤변을 극복한 것은 ‘무한’

제논의 패러독스들은 시간과 공간은 무한히 나눌 수 있고 움직임은 불연속의 조합이라고 믿었던 당시의 철학자들에게 파문을 던졌다. 제논의 패러독스에서 완전히 해방되는 데는 2천년이 넘게 걸렸다. 아리스토텔레스가 ‘궤변’으로 낙인찍어버린 후로 어느 정도 사장됐던 제논의 패러독스는 칸토르의 무한론으로 극복되기에 이른다.

19세기말 ‘수렴’의 개념이 생기기 전에는 n이 0이라는 것은 이상한 궤변이었을 뿐이었다. 칸토르의 무한론에 따르면 자연수와 유리수의 무한한 양은 같은 반면 자연수의 ‘무한’과 실수의 ‘무한’의 양은 다르다. 즉, 실수가 자연수보다 훨씬 큰 ‘무한’을 나타낸다. 결과적으로 시간을 실수의 ‘무한’으로 등분한다는 것과 자연수의 ‘무한’으로 나누는 것은 다르다. 여기에 등장한 ‘수렴’의 개념은 양수의 무한합은 무한이라는 예상을 깨고 + + + + … = 1 이라는 값을 얻어냈다. 결국 제논의 패러독스는 ‘무한’이라는 새로운 개념으로 미궁을 빠져나올 수가 있게 된 것이다.

패러독스가 수학사에 한 획을 그으며 수학의 기초를 흔들고 새로운 개념을 만들어낸 것은 이 경우가 처음은 아니다 (러셀의 패러독스나 괴델의 불완정성의 정리들이 대표적 예). 또한 여타의 과학분야에서도 상식이 깨지면서 과학의 발전을 가져온 것을 우리는 잘 알고 있다

댓글 없음:

댓글 쓰기